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Abstract. Case-based reasoning systems solve problems by reusimgles of
previous problem solving experience stored as a case-ifasedividual
problem solving cases. In this paper we describe a temknique for
constructing compact competent case-bases. Theigeehis novel in its use of
an explicit model of case competence. This allowgsés be selected on the
basis of their individual competence contributions. An egxpental study
shows how this technique compares favorably to madittonal strategies
across a range of standard data-sets.

1 Introduction

Case-based reasoning (CBR) solves problems by reusingolilt#orss to similar
problems stored as cases in a case-base [9]. Two impéataors contribute to the
performance of a CBR system. First therecdmpetence, that is the range of target
problems that can be successfully solved. Second, therefficiency, the
computational cost of solving a set of target problems.

Competence and efficiency both depend critically on tisesatored in the case-
base. Small case-bases offer potential efficiengyefits, but suffer from reduced
coverage of the target problem space, and therefore franited competence.
Conversely, large case-bases are more competent, doutredre susceptible to the
utility problem and its efficiency issues [see eg., 6, 124, 14]. Very briefly, the
utility problem occurs when new cases degrade ratherithprove efficiency. For
example, many CBR systems use retrieval methods whasee gl is related to the
case-base size, and under these conditions the additiedwfdant cases serves only
to degrade efficiency by increasing retrieval time.

A key performance goal for any CBR system has to eartaintenance of a case-
base that is optimal with respect to competence andegity, which in turn means
maximising coverage while minimising case-base siherd are two basic ways of
working towards this goal. The most common approach &rploy a case deletion
strategy, as part of the run-time learning processyriter to ensure that all cases
learned increase competence and efficiency. Recentechdeas suggested a number
of successful deletion policies for machine learningesys [see eg., 11, 12], and
more recently, a set of novel policies designed speliyfiftd CBR systems [16].

Deletion works well by drawing on valuable statistical-tume performance data,
but its starting point is an initial case-base that m@yar from optimal. A second
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(complimentary) approach is to tackle the construction ofritial case-base itself.
Instead of building a case-base from all availablmitrg instances we select only
those that are likely to contribute to performance. Hmisures that the initial case-
base is near-optimal from the start. This processfesred to agditing the training
data, and in this paper we present a new editing techniegigngd specifically for
CBR systems.

Section 2 focuses on related editing work from the macleiaming and pattern
recognition literature that can be adapted for CBR s&hechniques lack an explicit
model of case competence, which, we argue, limits theictefémess in a CBR
setting. Section 3 addresses this issue by describing petence model that can be
used during case-base editing. Finally, Section 4 ibescra comprehensive
evaluation of the new approach.

2 Related Work

Related work on pruning a set of training examples toymwe a compact competent
edited set comes from the pattern recognition and mackiarning community
through studies of nearest-neighbour (NN) and instancedbdsarning (IBL)
methods. In general, nearest neighbour methods are ustaksification problems,
regression tasks, and for case retrieval. Training exesraoe represented as points in
an n-dimensional feature space and are associated wihowan solution class
(classification problems) or continuous solution valusgession tasks) or even a
structured solution representation (case-based reasonieg)tdget instances (with
unknown solutions) are solved by locating their nearest-beigh(or k nearest
neighbours) within the feature space [see eg., 1,8,18].

Since the 1960's researchers have proposed a varietjtioly strategies to reduce
the need to store all of the training examples. Fdairt® many strategies selectively
add training examples to an edited training set untihdime as consistency over the
original training set is reached; that is, until théestlset can be used to correctly
solve all of the examples in the original training se[53, 18, 20, 21, 22].

Cases used in CBR systems are similar to the traiexgmples used in
classification systems and hence many of the same adeag editing training data
can be transferred to a CBR setting. The centralsagesin this paper is that the
successful editing of training data benefits from aplieit competence model in
order to guide the editing process. Previous NN and &kearch reflects this, but the
available models were designed for classification domand not for case-based
reasoning. We argue the need for a new competence modgiatk$or the specific
requirements of a case-based reasoner.

2.1 Condensed Nearest Neighbour Methods

A common approach for editing training data in NN and IBletmds is the
condensed nearest neighbour method (CNN) shown in AlgoritheNN produces
an edited set of examples (the e-set) that is consistigh the original unedited
training data (the o-set) [5, 8].

www.manaraa.com



O SET ~ Oiiginal training exanples
E-SET ~ {}
CHANGES ~ true

Whi | e CHANGES Do
CHANGES -~ false

For each case COO Set Do
| f E-SET cannot solve C Then
CHANGES ~ true
Add C to E-SET
Renove C from O Set
Endl f
EndFor
EndWhi | e

Algorithm 1. Condensed Nearest-Neighbour Algorithm

CNN makes multiple passes through the training data irerotd satisfy the
consistency criterion. In classification problems gl&impass is not sufficient as the
addition of a new example to the e-set may preventxample from being solved,
even though it was previously solved by the smallertel82, a common instance-
based learning approach to editing, employs a versiddNi that just makes one
pass through the training data and hence does not guatantéstency [1].

The CNN has inspired a range of variations on its editiegne [1, 4, 5, 7, 18] but
this represents just one half of the editing storgesond strategy was inspired by the
work of Wilson [22]. While CNN filters correctly claiied cases, so-called “Wilson
editing” filters incorrectly classified cases. As lwithe seminal work of Hart [8],
Wilson editing has inspired many follow-up studies [se#03 13, 19]. A full review
of this large body of editing work is beyond the scope isf paper and the interested
reader is referred to the references provided.

2.2 Competence Models

The CNN method suffers from two important shortcomirfgsst, the quality of
the edited set depds on the order in which training examples are consiere
Different orderings can result in different size editséts with different
competence characteristics.

A second problem is that the CNN approach adopts a caimpetence model to
guide the selection of training examples. Its stratedy add an example, e, only if it
cannot be solved by the edited set built so far — by itlefinsuch an example will
make a positive competence contribution. However, thisig true in the context of
the edited set that has been built so far. In sealiter more examples are added, it
may turn out that the example, e, does not make anyfisami competence
contribution because it is covered by later examplegldssification problems one
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approach is to select boundary examples for the editeakgbese provide necessary
and sufficient class descriptions. CNN as it standssténdselect such boundary

examples but also contaminates the edited set wittdadht interior examples [5, 7,

18] — it should be noted that alternative approachaghafocus on the selection of

non-boundary (interior) cases or the generation ofsiflagtion prototypes, do also

exist (eq, [4, 21, 22)).

To address these issues the reduced NN (RNN) algoritboegses the final CNN
edited set to delete such redundant examples. Briéftiieiremoval of an example
has no effect on consistency it is permanently delgfed

An alternative strategy is to order examples beforeNCprocessing. One
successful ordering policy for classification problemsoisise the distance between
an example and its nearest unlike neighbour (NUN). The NUideg is based on
the idea that training examples with different cladseglose to each other only if
they reside at or near the boundaries of their resgectasses; such examples have
small NUN distances. By sorting examples in ascendingr @f®&lUN distance we
can ensure that boundary examples are presented to @fdie binterior examples
and in this way increase the chances that interiompies will not be added to the
final edited set [5, 18].

The NUN concept is a competence model for classifingtiroblems. It predicts
that the competence of an individual example is irargrproportional to its NUN
distance and as such provides a means of ordering gamwamples by their
competence contributions.

2.3 Editing Case-Bases

The question we are interested in is how can CNN type itpeds be best used in a
CBR setting? In a more general sense however we aeested in how existing
editing approaches from the classification commurdty lse married with case-based
deletion policies to produce a CBR-centric hybrid editingtety.

Clearly the CNN concept is appropriate for CBR systdmspf course on its own
it will produce sub-optimal case-bases that are ordeertignt and that include
redundant cases. In the previous section we described hawJikeconcept provided
insight into the competence of training examples withassification problems. An
analogous competence model is needed for case-basedngason

While conventional nearest-neighbour methods (or more attyrenearest-
neighbour classifier rules) are often used in CBR systénere are often a number of
distinctions worth noting [9]. Firstly, cases are pftepresented using rich symbolic
descriptions, and the methods used to retrieve siélses are correspondingly more
elaborate. Secondly, and most importantly, the concept ofraat solution can be
very different from the atomic solution classes foundlassification systems, where
there are a small number of possible solution classdscarrectness is a simple
equality test. For example, in case-based planning sigmgroblems, solutions are
composite objects and the concept of correctness usudhg te a proposed target
solution that is functionally or behaviourally equivalenttte true target solution (eg.,
[9, 15]).
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As a result, CBR competence is different from competencelassification
problems where boundary training examples can offer complass coverage. Cases
do tend to be clustered according to gross solution claksmavever, the ability of a
boundary case to solve an interior case is entirely demérmh the potential for
solution adaptation and the availability of limited addptaknowledge. Thus, the
distinction between boundary and interior cases is no lomgdefined.

An implication of this argument is that the NUN distameetric may not be an
appropriate competence model for CBR applications. A empetence model,
designed specifically for CBR, is needed.

3 Modédling Case Competence

The idea that one can accurately model the competenceasfeabase is a powerful
one. In fact it has lead to a number of important devedspsnin CBR in recent times,
most notably in case deletion [16] and case-base vistiatisand authoring support
[17]. In this section we will argue that similar cortgree models can also be used to
guide the construction of a case-base. This model diffens the model introduced
by Smyth & Keane [16] in that it provides the sort of finaiged competence
measures that are appropriate for a CNN-type editingoappr In contrast the work
of Smyth & Keane focused on a coarse-grained competemodel capable of
highlighting broad competence distinctions between cdmsgsncapable of making
the find-graining distinctions that are important here. Wiédescribe a new metric
for measuring the relative competence of an individual caisd,present this as a
mechanism for ordering cases prior to case-base cotistr (editing).

3.1 A Review of Case Competence

When we talk about the competence of a case we areingfé its ability to solve
certain target problems. Consider a set of casesn€a space of target problems, T.
A case, EIC, can be used to solve a targéiJtif and only if two conditions hold.
First, the case must be retrieved for the target,seednd it must be possible to adapt
its solution so that it solves the target problem. Coemuet is therefore reduced if
adaptable cases fail to be retrieved or if non-adaptatslescare retrieved [15]. We
can model these relationships according to the definitioosrsin Def. 1 — 3.

Def 1. RetrievalSpacel{T)={cC: c is retrieved for t}
Def 2. AdaptationSpacel(iT)={cOC:c can be adapted for t}

Def 3. Solves(c,t)
iff cO[RetrievalSpace(t) AdaptationSpace(t)]

Two important competence properties are ¢heerage set and thereachability set.
The coverage set ofase is the set of altarget problems that this case can be used
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to solve. Conversely, the reachability set tdraet problemis the set of altases that
can be used to solve it.

Def 4. CoverageSet(dC)={tOT:Solves(c,t)}
Def 5. ReachabilitySet{fT)={cOC:Solves(c,t)}

If we could specify these two sets for every case inctse-base, and all possible
target problems, then we would have a complete picfitbe competence of a CBR
system. Unfortunately, this is not feasible. First, ttuehe sheer size of the target
problem space, computing these sets for every castayat problem is intractable.
Second, even if we could enumerate every possiblegrotiat the system might be
used to solve, it is next to impossible to identify thbset of problems the system
would actually encounter. Clearly, the best we can do find some approximation
to these sets by making some reasonable, simplifyingraton.

So, to characterise the competence of a case-baseadotabte fashion we make
the following Representativeness Assumption:

The case-base is a representative sample of the target problem space.

To put it another way, this assumption proposes that wehaseates in the case-base
as proxies for the target problems the system is expheotsolve. This assumption
may seem like a large step, as it proposes that tleehese is representative of all
future problems encountered by the system. It could gngedrthat we are assuming
that all the problems faced by the system are alreatiyed and in the case-base. We
think that this greatly overstates the reality of theaditun and underestimates the
contribution that adaptation knowledge can play in modifyéages to meet target
problems. Furthermore, we would argue that the represasriass assumption is one
currently made, albeit implicitly, by CBR researchéis; if a case-base were not
representative of the target problems to be solved thensystem could not be
forwarded as a valid solution to the task requirementsshiort, if CBR system
builders are not making these assumptions then they anstrocting case-bases
designednot to solve problems in the task domain. Of course iitpli this
assumption is made by all inductive learners, which ogslya representative set of
example instances to guide their particular problem solving task

Armed with the representativeness assumption, we can mowde tractable
definitions for coverage (Def. 6) and reachability (D8f.

Def 6: CoverageSet(dC)={c’ OC:Solves(c,c")}
Def 7. ReachabilitySet(@C)={c’' OC:Solves(c’,c)}

Intuitively, the relative sizes of these sets seerafuiure the relative competence of
different cases. For example, cases with large coeesats seem important because
they can solve many other problems and therefore sholld sany of the future
target problems. Conversely, cases with small realityalsiets seem important
because they must represent regions of the target proplaee ¢hat are difficult to
solve (regions with a rich solution topology that require neases for sufficient
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coverage). Unfortunately an accurate measure of true campetence is more
complex than this. Overlapping sets between differesgscaan reduce or exaggerate
the relative competence of an individual case (seg[atsd.7]).

3.2 Relative Coverage

Previous work on the competence of cases has ignored Waysasuring therecise
competence contributions efdividual cases. For example, Smyth & Keane [15]
present a number of competence categories to pernoasezgrained competence
assessment. Alternatively Smyth & McKenna [17] focushencompetence of groups
of cases. We are interested in developing a more fimiegd measure that is similar
in spirit to efficiency models such as the utility nefl11, 12].

To measure the competence of an individual case one akestrito account the
local coverage of the case as well as the degree wwhwihis coverage is duplicated
by nearby cases. To do this we define a measurelcalktive coverage (RC), which
estimates the unique competence contribution of an indilichse, c, as a function of
the size of the case’s coverage set (see Def. 8).

1
)|Reachabilit>8e(c )

RelativeCoveage(c) =
c’DCoverageSx{c
Def 8:

Some of the cases covered by c will also be covesedther cases, thereby
reducing c’s unique competence. For this reason, theiveelabverage measure
weights the contribution of each covered case by the dégnebich these cases are
themselves covered. It is based on the idea that e cds covered by n other cases
then each of the n cases will receive a contributiod/nffrom ¢’ to their relative
coverage measures.

Figure 1 displays a number of cases and their relativerage values. Case A
makes an isolated competence contribution that is rtcdted by any other cases.
Its coverage and reachability sets contain just aesicgse (case A itself) and so its
relative coverage value is 1; case A is a pivotal eas®rding to the competence
categories of Smyth & Keane [16]. Case B makes the latgeat competence
contribution (its coverage set contains 3 cases, B, CDartalit this contribution is
diluted because other cases also cover C and Drélagive coverage of B is 11/6
(that is 1+1/2+1/3). B is also a pivotal case but usitgtive coverage we can see that
it makes a larger competence contribution than A; previossigh fine-grained
competence distinctions were not possible. Cases C anchake no unique
competence contribution as they only duplicate parhefexisting coverage offered
by B. Consequently, C and D have relative coverageesalof 5/6 and 1/3
respectively; they are both auxiliary cases accordingeatmpetence categories of
Smyth & Keane [16].
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Fig. 1. Relative coverage values for cases. Each ellipsete®rbe coverage set of its
corresponding case and each RC value is shown indisack

3.3 Relative Coverage & CNN

In Section 2 we suggested that the CNN editing proceshutkel be used to construct
compact competent cases-bases once a suitable measltde found to sort cases
by their likely competence contributions. Relative coverég this measure. Our
proposed technique for building case-bases is to use CNbhges that have first
been arranged in descending order of their relativerageecontributions. This will
allow competence-rich cases to be selected befasectmapetent cases and thereby
maximise the rate at which competence increases dthhgase-base construction
process.

4 Experiments

Our new editing technique is based on a specific modsbmwipetence for case-based
reasoning. We argue that it has the potential for guidingdinstruction of smaller
case-bases than some existing editing methods without oorigimg competence,
specifically CNN on its own or CNN with NUN distance orderifrgturn we believe
that, as an ordering strategy, relative coverage edgltinue to perform well in
traditional classification problems. In this section walidate these claims by
comparing the consistency, size, and competence of taebeass produced using the
different editing techniques on a range of standard ddta-s

4.1 Experimental Setup

Three different editing techniques are compared forgkgerimental study (1) CNN
— the standard CNN approach; (2) NUN — CNN with casdered according to their
NUN distances; (3) RC — CNN with cases ordered accotditigeir relative coverage
values.
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Four different data-sets are used. Two, Credit (69@s)aand lonosphere (351
cases), represent classification problems and are bhaifeom the UCI Machine
Learning Repository (www.ics.uci.edu/~mlearn/MLRepmsithtml) [2]. The other 2
are more traditional CBR data-sets. Property (506 s}aise also from the UCI
repository and Travel (700 cases) is available fromAR€BR Case-Base Archive
(www.ai-cbr.org). The important point to note is that Rrypand Travel are not used
as classification data-sets. Instead they are wused uitd ba case-based
recommendation system where the objective is to locatasa that is sufficiently
similar to a given target problem across a range of soldfgatures. Consequently,
the concept of a single solution class is no longedvalikeeping with many CBR
applications and domains.

4.2 Consistency Growth

This first experiment is designed to investigate how iesistency of a case-base
(that is, competence with respect to the initialnireg data) varies as more cases are
added. We are interested in comparing the rate of increfasensistency for the
various editing strategies across the different dats-s

Method: For each data-set, 3 case-bases (edited sets) amuctatsby using each
of the editing strategies on the available training caeseach case is added to a
case-base, the consistency of that case-base is nebadgtherespect to the initial
training cases; that is, we measure the percentageinihy cases that can be solved
by the case-base built so far.

Results: This experiment generates 4 consistency graphs (oneadbr data-set),
each containing 3 plots (one per editing strategy). Elkelts are shown in Figures
2(a)-(d) as graphs of percentage consistency versus assestze as a percentage of
overall training set size.

Discussion: In this experiment 100% consistency is achieved by RC witlerf
cases (albeit marginally fewer) than with any otlditieg strategy. Unfortunately, as
we shall see in the next experiment, this result doesoldt in general. However,
aside from the size of the final edited case-basegjawnotice that the graphs indicate
that the RC method is selecting more competent cases quickly that the other
strategies. For example, in the Travel domain the cemsig of the case-base
produced by the RC strategy at the 10% size levgipsoximately 65% (that is 65%
of the training set can be solved by a 10% subset). ltrasththe CNN policy
produces a case-base with only 40% consistency, and ptbtNices a case-base with
only 45% consistency at this 10% size level. Similar resare found in the Property
domain. The results on the classification data-setqatre@s positive, but still bode
well for RC. The RC policy generally out-performs CNhdakeeps pace with NUN
particularly for small case-base sizes. This leadsousonclude that the relative
coverage measure is also a valid measure of competenaalitional classification
domains.
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Fig. 2(a)-(d). Case-Base Consistency versus Size.

4.3 SizevsCompetence

While consistency is a measure of performance relédiviee training set, the true test
of editing quality is the competence of the edited setunseen test data. In this
experiment, we compare the sizes of the case-bast®it competence on unseen
target problems.

Method: Each editing strategy is used to generate case-farst®e 4 data-sets.
However, this time 100 random test problems are rechdk@m the training set
before case-base construction. The final size of the lmses (at the 100%
consistency mark) and their competence over the 100 tedepm®lis noted. This
process is repeated 100 times, each time with areliffeset of 100 random test
problems, to generate 1200 case-bases.

Results: For each data-set and editing strategy we compute &z rtase-base
size and competence over the 100 test runs. The resulsh@mm in Table 1. Each
cell in the table holds two values: the mean size y&pe) and competence (bottom
value) of the case-bases produced by a given editinggstraiea given data-set.

Discussion: RC and NUN produce smaller case-bases than the sta@idN
approach for the classification data-sets (lonosphereefif— NUN case-bases are
marginally smaller than the RC case-bases, but to ensgte the competence of the
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RC case-bases is higher. In fact, with the Credit-detdhe RC method produces a
case-base with a competence value that is highethiba@NN case-base which is, on
average, nearly 50 cases larger.

RC produces significantly smaller case-bases than botthefother editing
strategies for the CBR data-sets (Travel & Property)is Tis because relative
coverage is an explicit competence model for CBR whileNNi¥ designed for
classification problems. In fact, we notice that in ¢hdata-sets the NUN method is
performing even worse than CNN — further evidence that thi Nilstance concept is
not appropriate in a CBR setting.

Dataset/Editing | CNN NUN RC
lonosphere 61.93 | 46.39 | 49.47
85.78 | 84.44 | 85.3
Credit 344.84 | 297.43 | 299.19
58.85 | 58.95 | 60.44
Travel 184.28 | 196.98 | 165.42
89.25 | 88.72 | 86.4
Property 55.19 | 57.81 | 45.44
95.92 | 95.53 | 94.62

Table 1. A comparison of different editing strategies over thg ata-sets in terms of mean
case-base size and competence. The upper value in@h&htbe average size of the case-
bases produces and the lower value is the average tmmpealue.

One of the problems with this experiment is that itnipossible to compare case-
bases with different sizes and competence valueseX@nple we've already noted
that the RC method produces slightly larger case-lihaasNUN in the classification
problems, but that these case-bases have better tmoperalues. Conversely, in the
CBR data-sets, RC is producing much smaller case-blasethese case-bases have
slightly lower competence values. What do these coenpetdifferences mean? Are
the competence drops found in the CBR data-sets becauR€ thneethod is selecting
cases that generalise poorly over the target problenasedhey a natural implication
of the smaller case-bases? If we remove casestfrer@NN and NUN case-bases (or
conversely add cases to the RC case-bases) sol ttedebases are normalised to the
same size, how would this change their competence vallles®e questions are
answered in the next experiment.

4.4  Normalising Competence

This experiment compares the competence of the cass-pesduced by the different
strategies after normalising each with respect tosthe of the RC case-bases. The
argument could be made that this size-limiting experinierdrtificial and that is
serves only to hamper the performance of the other algaithimwever we disagree.
We are not just interested in the ultimate size andpedemce of the edited case-base
that is produced by a patrticular editing policy. We aterested in how competence
grows as more cases are added. If, for example R@Bepolicy is seen to more
aggressively increase competence than the competingiegolthen this is an
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important advantage, particularly if our editing strégsgmust work within a
resource-bounded setting where, for example the maximum sitte @fdited set is
limited.

Method: Each of the CNN and NUN case-bases from the previxpesrienent are
normalised with respect to their corresponding RC tase- by adding or removing
cases as appropriate. To ensure fairness cases ard addemoved using the
appropriate strategy. For example, if a case is reméreed a NUN case-base then it
will be the last case that was added.

Results: The results are shown in Table 2. Each value is the @mpetence of
the case-bases produced by each of the editing ststegiee they have been
normalised to the appropriate RC case-base size.

Discussion: The results are positive. The competence of the RC eesshis
higher than the corresponding case-bases produced by the stiiegies after
normalisation. This demonstrates that the RC method istisgjeases that are more
competent than those selected by any other method, aggithe results found in
section 4.2 when consistency was measured. Moreoveglte coverage measure
performs well in both classification and CBR settingsjilevthe NUN method
performs relatively poorly in the CBR data-sets. In fattTable 2 we see that the
normalised competence values for the NUN case-basessmaller than the
competence values for the CNN case-bases, for the CBFRselit

Dataset/Editing | CNN NUN RC
lonosphere 84.26 85.23 85.3
Credit 58.36 59.3 60.44
Travel 85.03 83.23 86.4
Property 92.65 91.9 94.62

Table 2. The competence values of all case-bases norm#étithd RC case-base size.

5 Conclusions

The ability to edit training data prior to learningshideen an important research goal
for the machine learning community for many years. \eehadapted a traditional
editing procedure, CNN, for use with case-based reas@ystgms. The central idea
behind the adaptation is that effective editing mudbdsed on an accurate model of
case competence, so that the competence of a caseabdse optimised with respect
to its size. A new editing technique was introducedeth@s a novel measure of case
competence called relative coverage. This new technigseewaluated with respect
to a number of more conventional editing strategiescend variety of classification
and CBR data-sets. The results were positive but ttemtaThe new method
performed well on all data-sets and out-performed adllsion the CBR data-sets. In
general we saw that the relative coverage measwwedl our editing technique to
select cases with higher competence contributions thase tbases selected by any
competing editing strategy.
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However, before closing we would like to emphasise tthiat research represents
the tip of the iceberg of case-base editing. Obviouslycatrent experiments need to
be extended to include a broader range of traditionaingdiechniques such as the
Wilson-editing approaches [3, 10, 13, 19, 22]. We haveritesi a competence
model for CBR that appears to benefit the editing pcasd we have integrated this
into one particular editing approach. Future work wilinsider the more general
properties of this model with respect to other editimatsgies. We believe that,
ultimately, the optimal approach to editing case-bagélsincorporate a range of
ideas from a variety of editing approaches.
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